

iML7991 Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

General Description

The iML7991 is an I²C interfaced digitally programmable gamma buffer and digital VR (DVR) with integrated VCOM buffer & contains embedded programmable Non Volatile Memory (NVM). NVM can be used to hold the digital values corresponding to 14 programmable GAMMA channel and DVR

14 channels of programmable and switchable reference voltage generator provide switching between 2 GAMMA curves. With these gamma curves, DVR & internal VCOM with embedded Non Volatile Memory (NVM), the iML7991 provides a complete 14-channel total gamma solution for TFT-LCD displays.

Through the I^2C interface, user can program the DVR_OUT, which connects to the input of the V_{COM} Buffer, to fine tune the V_{COM} setting. Also the serial interface allows user to optimize the 14-channel switchable gamma reference voltages to enhance the display performance.

An external resistor attached to the SET pin sets the full-scale sink current and determines the lowest voltage of the V_{COM} input. At power up, the iML7991 automatically sets the 7-bit DVR register value and 10bit 14 channel gamma buffer values to the values stored in NVM. Gamma buffer outputs are not enabled until all values are read from NVM.

The iML7991 is available in a 32-pin 5x5 Thin QFN package with a maximum thickness of 0.8mm for ultra thin LCD panel design.

Applications

Pin Diagrams (Top View)

Features

- 128-step programmable sink-current output for DVR_OUT
- DVR_OUT voltage adjustable via SET Pin
- Built in VCOM buffer
- Guaranteed monotonic over temperature for DVR_OUT and Gamma Buffer outputs
- 14-ch analog output for gamma reference voltages with 10 bit DAC resolution
- 1024 -step digitally programmable gamma reference voltages
- 1 STATIC_HI voltage input used as upper reference voltage for internal DAC operation.
- Digital Supply Voltage(DVDD): 2.3V to 4V

- TFT-LCD TVs
- TFT-LCD Monitors
- TFT-LCD Notebook PC

Ordering Information

Package	Part Number	Tape & Reel
32-pin TQFN	iML7991ID	-
(Halogen Free)	iML7991ID-TR	13"

- NVM Read: Minimim DVDD 2.3V
- NVM write : Minimum DVDD 2.7V
- Analog Supply Voltage (AVDD): 6.5V to 18V
- I ²C Interface:
 - Address: 111010A₀C (A₀ \rightarrow bit-0 address = 0 or 1)
 - (C=0 \rightarrow Write; C=1 \rightarrow Read.)
 - 400KHz maximum clock frequency
- 32-TQFN (0.85mm max) with thermal pad

Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

Pin Descriptions

Pin No.	Pin Name	Туре	I/О Туре	Function
8,31,32	AVDD	Power	Supply	Analog power supply
11,25,29	AGND	Ground	Ground	Analog Ground
15	SDA	Digital	Input and Open Drain Output	I ² C Serial Digital Data Input/Output.
14	SCL	Digital	Input	I ² C Digital Serial Clock Input
27	VCOM_ADJ	Analog	Output	Adjust sink current output. This pin connects to resistive divider between AVDD and AGND that sets VCOM voltage
30	VCOM_OUT	Analog	Output	Voltage output for VCOM.
28	VCOM_FB	Analog	Input	VCOM feedback signal
26	SET	Analog	Input	Full scale sink current adjustment
16	nWR	Digital	Input	Enable/Disable write data in Non Volatile Memory. nWR = 0, Data can be written to Non Volatile Memory nWR = 1, Data can not be written to Non Volatile Memory
1	OUT1	Analog	Output	Analog output reference-1
2	OUT2	Analog	Output	Analog output reference-2
3	OUT3	Analog	Output	Analog output reference-3
4	OUT4	Analog	Output	Analog output reference-4
5	OUT5	Analog	Output	Analog output reference-5
6	OUT6	Analog	Output	Analog output reference-6
7	OUT7	Analog	Output	Analog output reference-7
18	OUT8	Analog	Output	Analog output reference-8
19	OUT9	Analog	Output	Analog output reference-9
20	OUT10	Analog	Output	Analog output reference-10
21	OUT11	Analog	Output	Analog output reference-11
22	OUT12	Analog	Output	Analog output reference-12
23	OUT13	Analog	Output	Analog output reference-13
24	OUT14	Analog	Output	Analog output reference-14
17	DVDD	Power	Supply	Digital voltage power supply
13	DGND	Ground	Ground	Digital Ground
12	BANK_SEL	Digital	Input	Internal A/B bank select, LO=Bank A, HI=Bank B
9	STATIC_HI	Analog	Input	Hi reference for output voltage
10	A0	Digital	Input	Device address select (A0 low address 0x74, A0 High address 0x75)
	TP	Thermal Pad	-	Thermal pad connected to AGND

© 2008, 2009, 2110 IML Inc. All rights reserved.

Confidential

Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

Function Block Diagram

© 2008, 2009, 2110 IML Inc. All rights reserved.

Confidential

Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

Absolute Maximum Ratings

<u>Caution</u>: Values beyond absolute ratings can cause the device to be prematurely damaged. Absolute maximum ratings are stress ratings only and functional device operation is not guaranteed.

DVDD to GND	-0.3 to + 7V	Operating Temperature	-40°C to +85°C
Input Voltages to GND:		ESD (HBM) Rating: Device	$\pm 2 KV$
VCOM_FB,VCOM_ADJ,SET	- 0.3V to +20V		
BANK_SEL,A0,SCL,SDA,nWR	-0.3V to +7V		
Output Voltage to GND: OUT	- 0.3V to + 20V	Moisture Sensitivity	Level-1
Maximum Continuous Output Current		Max. Lead Temperature	+260°C
Out1 to out14	-60 to +60mA	(soldering 10sec) (Lead Tips	
VCOM	-130 to +130mA	Only)	
Max. Storage Temperature Range	-65°C to +150°C	Max. Junction Temperature	+150°C
		Range	

<u>Note</u>: All parameters having Min/Max specifications are guaranteed. Typical values are for reference purpose only. Unless otherwise noted, all tests are pulsed tests at the specified temperature, therefore: $T_J = T_C = T_A$.

Electrical Characteristics

Test Conditions: DVDD = 3V, AVDD = 16.5V, $@T_A = 25^{\circ}C$ unless otherwise specified.

. .		T 10 IV	Temp		-		
Parameter	Symbol	Test Conditions	(°C)	Min	Тур	Max	Units
DC CHARACTERISTICS							
DVDD Supply Range (Operating)	DVDD		Full	2.3	-	3.6	V
DVDD Supply voltage for		NVM Read		2.3	3.3	3.6	V
NVM read operation DVDD Supply voltage for		NVM write		2.7	3.3	3.6	v
NVM write operation DVDD Supply Current	I _{DD}	DVR Γ Registers are at default values (No load)	Full	-	1	-	mA
AVDD Supply Range	VAVDD	DVDD range 2.3V – 3.6V	Full	6.5	-	18	V
AVDD Supply Current	IAVDD	DVR Γ Registers are at default values (No load)	Full	-	25	-	mA
Gamma Voltage Resolution	GM_{VR}		Full	-	10	-	Bits
Gamma Differential Nonlinearity	GM _{DN}	Monotonic over temperature	Full	- 1		+1	LSB
Gamma Integral Nonlinearity	GMIN		Full	- 4		+4	LSB
SET Voltage Resolution	SETVR		Full	-	7	-	Bits
SET Differential Nonlinearity	SET _{DN}	Monotonic over temperature	Full	-1	-	+1	LSB
SET Zero-Scale Error	SET _{ZSE}		Full	-1	-	+2	LSB
SET Full-Scale Error	SET _{FSE}		Full	-4	-	+4	LSB
SET Current	ISET	Through R _{SET}	Full	-	-	120	μA
AVDD to SET voltage attenuation	V_{AVDDSET}		Full	0.05	-	-	V/V
SDA, SCL Input Logic High	VIH		Full	0.7 * DVDD	-	-	V
SDA, SCL Input Logic Low	VIL		Full	-	-	0.3 * DVDD	V

© 2008, 2009, 2110 IML Inc. All rights reserved.

Confidential

Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

			Temp				
Parameter	Symbol	Test Conditions	(°C)	Min	Тур	Max	Units
SDA, SCL Hysteresis	HYSswp		Full	0.05 * DVDD			V
SDA Output Logic High	VOHS	@ I _L = + 3 mA	Full	DVDD - 0.4			V
SDA Output Logic Low	VOLS	@ I _L = -3 mA	Full			0.4	V
I ² C INTERFACE							
SCL Clock Frequency	F _{SCL}		Full	0	-	400	kHz
I ² C Clock High Time	t _{SCH}		Full	0.6			μs
I ² C Clock Low Time	t _{SCL}		Full	1.3			μs
¹² C spike rejection filter pulse width	t _{DSP}		Full	0		50	ns
I ² C Data Set-up Time	t _{SDS}		Full	100			ns
I ² C Data Hold Time	t _{SDH}		Full	0		900	ns
I ² C SDA, SCL Input Rise Time	t _{i2CR}	Load dependent	Full	20 + 0.1* CB		1000	ns
I ² C SDA, SCL Input Fall Time	t _{I2CF}	Load dependent	Full	20 + 0.1* CB		300	ns
I ² C bus free time between stop and start	t _{BUF}		Full	1.3			μs
I ² C repeated start condition set-up	t _{STS}		Full	0.6			μs
I ² C repeated start condition hold	t _{sтн}		Full	0.6			μs
I ² C Stop Condition Set-up	t _{SPS}		Full	0.6			μs
I ² C Bus Capacitive Load	CB		Full			400	pF
Capacitance on SDA	CSDA		Full			10	pF
GAMMA BUFFER & VCOM I	BUFFER			•			
Output High (OUT1 to OUT7)	V _{он}	No load DAC = 1023	Full		STATIC _HI		V
Output Low (OUT1 to OUT7)	V _{OL}	No load DAC = 0	Full	1.5			V
Output High (OUT8 to OUT14)	Vон	No load DAC = 1023	Full		STATIC _HI -1.5		V
Output Low (OUT8 to OUT14)	Vol	No load DAC = 0	Full	0			mV
Output current	lout	GAMMA Buffer	Full		±25		mA
		VCOM Buffer	Full		±100		mA
Dutput Short circuit current	lsc	GAMMA Buffer	Full		±75		mA
		VCOM Buffer	Full		±140		mA
Slew Rate	SR	GAMMA Buffer@10K,10pf	Full		8		V/µs
		VCOM Buffer	Full		20		V/µs
Load Regulation	REG	I _{OUT} =5mA step @default values	Full		0.4		mV/mA
Power Supply Rejection Ratio	PSRR	AVDD sweeps from 14V to 16V	Full	50	60		dB

© 2008, 2009, 2110 IML Inc. All rights reserved.

Confidential

iML7991 Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

I²C Operation:

Write Mode

If the read/write bit =low @ I2C protocol, the device enter the write mode, and the Host can write data into register part, including CONTROL BYTE, VCOM register, DAC_Reg. if the RESET, WR to NVM bit of Control Byte is "1", iML7991 internal H/W will return "NA" if the host try to write registers.

Burst Mode Write Operation

For the burst mode in the write transfer, a master device sends data to program all the output buffers. The input data bytes (DATA 1 (MSB) and (DATA 1 (LSB)) to the first channel (OUT1) starts from the third byte following the control byte and DVR byte. The second channel (OUT2) is programmed by the fifth and sixth byte (DATA 2 (MSB) and (DATA 2 (LSB)), and so on. Each byte is followed by an acknowledge bit.

Single Mode Write operation

The device also support single mode transfer, a master device send data to program define output buffer. The input data bytes (DATA N (MSB) and (DATA N (LSB)) to the N channel (OUT N). Each byte is followed by an acknowledge bit.

Write protocols

If internal memory operation is already in progress then device will return No Acknowledgment, i.e. NA to any of I2C host command to indicate that memory operation is in process.

In following protocols: S indicates START P Indicates STOP A indicates ACKNOWLEDGEMENT NA indicates NO ACKNOWLEDGEMENT SR indicates REPEAT START R indicates READ

W indicate WRITE

Write protocol to load EEPROM data to registers:

s	Slave Address	w	А	Index Address 0	А	Control Byte (0x10)	А	Р
---	---------------	---	---	-----------------	---	-----------------------	---	---

Write protocol to write registers data to EEPROM:

s	Slave Address	w	А	Index Address 0	А	Control Byte (0x08)	Α	Р	
---	---------------	---	---	-----------------	---	-----------------------	---	---	--

Write protocol to enable outputs:

s	Slave Address	w	А	Index Address 0	А	Control Byte (0x02)	А	Ρ
---	---------------	---	---	-----------------	---	-----------------------	---	---

Write protocol to write data to DVCOM:

s	Slave Address	w	А	Index Address 1	А	Control Byte (0x02)	Α	Р	
---	---------------	---	---	-----------------	---	-----------------------	---	---	--

Single Mode Write Protocol to write register at index address X:

Consist of 3 steps:

Ste	Step 1: Disable output by resetting OUT_EN bit											
s	Slave Address	w	А	Index Address 0	А	Control Byte (0x00)	Α	Р				

Step 2: Write data for registers $X, X \ge 2$

s	Slave Address	w	А	Index Address X	А	MSB(X)	А	LSB(X)	А	Р
---	---------------	---	---	-----------------	---	--------	---	--------	---	---

Ste	Step 3: Enable output by setting OUT_EN bit												
S	Slave Address	w	А	Index Address 0	А	Control Byte (0x02)	А	Ρ					

Note: Step 1 and 3 are not mandatory for step 2 and depends on application to use them or not.

Burst Mode Write Protocol to write from register at index address X to index address Y:

Consist of 3 steps:

Step 1:	Disable output b	y resetting	OUT_	EN bit
---------	------------------	-------------	------	--------

s	Slave Address	w	А	Index Address 0	А	Control Byte (0)	x00) A	Р
---	---------------	---	---	-----------------	---	------------------	--------	---

Step 2: Write data for registers X

			3	****						
s	Slave Address	w	А	Index Address X	А	MSB(X)	А	LSB(X)	А	

Step 3: Enable output by setting OUT_EN bit

s	Slave Address	w	А	Index Address 0	А	Control Byte (0x02)	Α	Р	
---	---------------	---	---	-----------------	---	---------------------	---	---	--

Note: Step 1 and 3 are not mandatory for step 2 and depends on application to use them or not.

© 2008, 2009, 2110 IML Inc. All rights reserved.	Confidential	7991DOC rev1.0 7
--	--------------	------------------

iML7991 Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

Read protocols

If internal memory operation is already in progress then device will return No Acknowledgment, i.e. NA to any of I2C host command to indicate that memory operation is in process.

In following protocols S indicates START P Indicates STOP A indicates ACKNOWLEDGEMENT NA indicates NO ACKNOWLEDGEMENT SR indicates REPEAT START R indicates READ

W indicate WRITE

Read protocol to read control byte (index address 0) or DVCOM (index address 1)

Single Mode Read Protocol to read register at index address X:

 Read data for registers X, X ≥ 2

 S Slave Address
 W
 A
 Index Address X
 SR
 Slave Address
 R
 A
 Data for X
 NA
 P

Burst Mode Read Protocol to Read from register at index address X to index address Y:

s	Slave Address	W	А	Index Address X	SR	Slave Address	R	A	DATA(X)	А	DATA(X+1)	А		
---	---------------	---	---	-----------------	----	---------------	---	---	---------	---	-----------	---	--	--

	А	DATA (Y-1)	А	Data(Y)	NA	Р]
--	---	------------	---	---------	----	---	---

© 2008, 2009, 2110 IML Inc. All rights reserved. Confidential 7991DOC rev1.0 8

Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

Index Address Table

iML7991 Device Address 0x74, 0x75

Index Address	DATA								BANK	Note
Hex	Bit 7	Bit6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
00	CTRL B	YTE[7:0]								CTRL BYTE
01	DVR[7:0]]	-	-	-			-		DIGITAL VCOM
02	-	-	G1[9]	G1[8]	G1[7]	G1[6]	G1[5]	G1[4]	BANK A	
03	G1[3]	G1[2]	G1[1]	G1[0]	-	-	G2[9]	G2[8]	BANK A	GAMMA 1/2
04	G2[7]	G2[6]	G2[5]	G2[4]	G2[3]	G2[2]	G2[1]	G2[0]	BANK A	
05	-	-	G3[9]	G3[8]	G3[7]	G3[6]	G3[5]	G3[4]	BANK A	
06	G3[3]	G3[2]	G3[1]	G3[0]	-	-	G4[9]	G4[8]	BANK A	GAMMA 3/4
07	G4[7]	G4[6]	G4[5]	G4[4]	G4[3]	G4[2]	G4[1]	G4[0]	BANK A	
08	-	-	G5[9]	G5[8]	G5[7]	G5[6]	G5[5]	G5[4]	BANK A	_
09	G5[3]	G5[2]	G5[1]	G5[0]	-	-	G6[9]	G6[8]	BANK A	GAMMA 5/6
0A	G6[7]	G6[6]	G6[5]	G6[4]	G6[3]	G6[2]	G6[1]	G6[0]	BANK A	
0B	-	-	G7[9]	G7[8]	G7[7]	G7[6]	G7[5]	G7[4]	BANK A	
00	G7[3]	G7[2]	G7[1]	G7[0]	-	-	G8[9]	G8[8]	BANK A	GAMMA 7/8
0D	G8[7]	G8[6]	G8[5]	G8[4]	G8[3]	G8[2]	G8[1]	G8[0]	BANK A	
0E	-	-	G9[9]	G9[8]	G9[7]	G9[6]	G9[5]	G9[4]	BANK A	
0F	G9[3]	G9[2]	G9[1]	G9[0]	-	-	G10[9]	G10[8]	BANK A	GAMMA 9/10
10	G10[7]	G10[6]	G10[5]	G10[4]	G10[3]	G10[2]	G10[1]	G10[0]	BANK A	
11	-	-	G11[9]	G11[8]	G11[7]	G11[6]	G11[5]	G11[4]	BANK A	
12	G11[3]	G11[2]	G11[1]	G11[0]	-	-	G12[9]	G12[8]	BANK A	GAMMA 11/12
13	G12[7]	G12[6]	G12[5]	G12[4]	G12[3]	G12[2]	G12[1]	G12[0]	BANK A	
14	-	-	G13[9]	G13[8]	G13[7]	G13[6]	G13[5]	G13[4]	BANK A	
15	G13[3]	G13[2]	G13[1]	G13[0]	-	-	G14[9]	G14[8]	BANK A	GAMMA 13/14
16	G14[7]	G14[6]	G14[5]	G14[4]	G14[3]	G14[2]	G14[1]	G14[0]	BANK A	
17 TO 24	R	R	R	R	R	R	R	R	BANK A	RESERVED
25	-	-	G1[9]	G1[8]	G1[7]	G1[6]	G1[5]	G1[4]	BANK B	
26	G1[3]	G1[2]	G1[1]	G1[0]	-	-	G2[9]	G2[8]	BANK B	GAMMA 1/2
27	G2[7]	G2[6]	G2[5]	G2[4]	G2[3]	G2[2]	G2[1]	G2[0]	BANK B	
28	-	-	G3[9]	G3[8]	G3[7]	G3[6]	G3[5]	G3[4]	BANK B	
29	G3[3]	G3[2]	G3[1]	G3[0]	-	-	G4[9]	G4[8]	BANK B	GAMMA 3/4
2A	G4[7]	G4[6]	G4[5]	G4[4]	G4[3]	G4[2]	G4[1]	G4[0]	BANK B	1

© 2008, 2009, 2110 IML Inc. All rights reserved.

Confidential

Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

Index Address	DATA	-		-	-	-		-	BANK	Note	
2B	-	-	G5[9]	G5[8]	G5[7]	G5[6]	G5[5]	G5[4]	BANK B		
20	G5[3]	G5[2]	G5[1]	G5[0]	-	-	G6[9]	G6[8]	BANK B	GAMMA 5/6	
2D	G6[7]	G6[6]	G6[5]	G6[4]	G6[3]	G6[2]	G6[1]	G6[0]	BANK B		
2E	-	-	G7[9]	G7[8]	G7[7]	G7[6]	G7[5]	G7[4]	BANK B		
2F	G7[3]	G7[2]	G7[1]	G7[0]	-	-	G8[9]	G8[8]	BANK B	GAMIMA 7/8	
30	G8[7]	G8[6]	G8[5]	G8[4]	G8[3]	G8[2]	G8[1]	G8[0]	BANK B		
31	-	-	G9[9]	G9[8]	G9[7]	G9[6]	G9[5]	G9[4]	BANK B		
32	G9[3]	G9[2]	G9[1]	G9[0]	-	-	G10[9]	G10[8]	BANK B	GAMMA 9/10	
33	G10[7]	G10[6]	G10[5]	G10[4]	G10[3]	G10[2]	G10[1]	G10[0]	BANK B		
34	-	-	G11[9]	G11[8]	G11[7]	G11[6]	G11[5]	G11[4]	BANK B		
35	G11[3]	G11[2]	G11[1]	G11[0]	-	-	G12[9]	G12[8]	BANK B	GAMMA 11/12	
36	G12[7]	G12[6]	G12[5]	G12[4]	G12[3]	G12[2]	G12[1]	G12[0]	BANK B		
37	-	-	G13[9]	G13[8]	G13[7]	G13[6]	G13[5]	G13[4]	BANK B		
38	G13[3]	G13[2]	G13[1]	G13[0]	-	-	G14[9]	G14[8]	BANK B	GAMMA 13/14	
39	G14[7]	G14[6]	G14[5]	G14[4]	G14[3]	G14[2]	G14[1]	G14[0]	BANK B		
3A TO 45	R	R	R	R	R	R	R	R	BANK B	RESERVED	

NOTE: Above GX[N] means Gamma buffer number X bit number N

© 2008, 2009, 2110 IML Inc. All rights reserved. Confidential 7991DOC rev1.0 10

Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

Control Register Definition: 8 bit Control register exist at index address 0

Bits	Bit Name	Description
0		This bit is reserved
1	OUT_EN	This bit when SET to 1 enables outputs
2		This bit is reserved
3	WR_NVM	This bit when SET to 1, bank A & bank B data is written to EEPROM
4	RESET	This bit when SET to 1, bank A & bank B data is read from EEPROM
5		This bit is reserved
6	HOT_EN	This bit when SET to 1 disables thermal sensor
7		This bit is reserved

NOTE:

WR_NVM & RESET bit when set to 1 memory operation starts. After memory operation is finished these bits are cleared by hardware to 0.

RESET bit when set to 1, OUT_EN bit is cleared by hardware to disable outputs. When memory read is finished, OUT_EN is set to 1 by hardware to enable the outputs again.

Power-On Sequencing

At power-on, before DVDD stabilizes, make sure that AVDD always trails DVDD (i.e. DVDD voltage level should be higher than AVDD during power-on) to avoid AVDD in-rush current. It is strongly recommended to power on DVDD first before turning on AVDD.

© 2008, 2009, 2110 IML Inc. All rights reserved.

Confidential

Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

iML7991

Typical Application Circuit

© 2008, 2009, 2110 IML Inc. All rights reserved. Confidential 7991DOC rev1.0 12

Programmable Gamma Buffers, DVR & VCOM buffer with Embedded Non Volatile Memory (NVM)

Package Information 32 Pin TQFN

Symble	DIMENSION IN MM			DIMENSION IN INCH		
	MN.	NOM.	MAX.	MIN.	NOM.	MAX.
А	0.70	0.75	0.80	0.0276	0.0295	0.0315
A1	0.00		0.05	0.0000		0.0020
A2	0.19	0.20	0.21	0.0075	0.0079	0.0083
D	4,95	5,00	5.05	0,1949	0,1969	0,1988
E	4,95	5,00	5,05	0,1949	0,1969	0,1988
D1	3.50	3.65	3.75	0.1378	0.1437	0.1476
E1	3.50	3.65	3.75	0.1378	0.1437	0.1476
Ь	0.18	0.23	0.28	0.0071	0.0091	0.0 1 10
е	0,50 BSC			0.0197 BSC		
L	0,30	0,35	0,45	0,0118	0,0138	0,0177

© 2008, 2009, 2110 IML Inc. All rights reserved.	Confidential	7991DOC rev1.0 1	3
--	--------------	------------------	---